Opioid Receptors of the Central Amygdala and Morphine-Induced Antinociception
Authors
Abstract:
The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. Methods: In this study, we used 130 male Wistar rats (200- 250g). Bilateral two guide cannula were inserted into central nuclei of amygdala. The drugs were administrated via intra central- amygdala and intraperitoneal. The antinociceptive effect was measured by formalin test. Results: Bilateral microinjections of morphine (50 and 100 μg/rat) into the central nuclei of amygdala elicited powerful suppression of nociceptive behaviors in both phases of formalin test. The intraperitoneal administration of naloxone (1 and 2 mg/kg) decreased significantly the antinociception induced by the intra-amygdaloid injection of morphine. Our data also showed that microinjection of naloxone (50 and 100 μg/rat) into the central nuclei of amygdala could reduce the analgesic effects of systemic morphine (7 mg/kg). On the other hand, bilateral neurotoxic lesions of the central nuclei of amygdala attenuated the antinociception induced by subcutaneous or intra-amygdaloid injection of morphine. Conclusion: These findings suggest that morphine analgesia in the formalin test depends on ascending connections to the forebrain, probably the amygdala.
similar resources
opioid receptors of the central amygdala and morphine-induced antinociception
the amygdala is a forebrain region, which is known as a modulator of pain sensation. the amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. we here studied the role of central nuclei of amygdala in morphine antinociception. methods: in this study, we used 130 male wistar rats (200- 250g). bil...
full textOpioid receptors of the central amygdala and morphine-induced antinociception.
BACKGROUND The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. METHODS In this study, we used 130 male Wistar rats (200...
full textInvolvement of central amygdala muscarinic receptors in morphine-induced amnesia in rat
Introduction: Learning and memory processes result from interaction of neurotransmitter systems in various brain regions such as amygdala and hippocampus. Considering that morphine induces memory impairment, in the current study, we examined the possible role of cholinergic muscarinic receptors of the central amygdala (CeA) on the morphine-induced amnesia in adult male Wistar rats. Methods...
full textGABAB receptors within the central nucleus of amygdala may involve in the morphine-induced incentive tolerance in female rats
Objective(s): Central nucleus of amygdala (CeA) is the most important region for morphine-induced reward, and GABAergic system plays an important role on morphine reinforcement. The influence of CeA administration of GABAB receptor agonist and antagonist on the expression and acquisition of morphine-induced incentive tolerance using conditioned place preference (CPP) paradigm was investigated i...
full textThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
full textThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
full textMy Resources
Journal title
volume 11 issue 2
pages 75- 80
publication date 2007-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023